Algorithms:
Decision Trees



A small dataset: Miles Per Gallon

e Suppose we want to predict MPG
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40 Records
e From the UCI repository
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Recursion Step

‘| mpg values: bad good

root

22 18

pchance = 0.001

Records
in which
cylinders

=4

Records
in which
cylinders

=5

cylinders = 3 || cylinders = 4 || cylinders =5 | cylinders = 6 | cylinders = 8
00 4 17 10 80 9 1
Predict bad  Predict good Predict bad Predict bad Predict bad
And partition it
according
Take the to the value of
Original the attribute
Dataset..

we split on

Records
in which

cylinders
=6

Records
in which

cylinders
=8




Second level of tree
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The final tree
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Classification of a new example

o Classifying a test example
e Traverse tree

» Report leaf label



Learning decision trees is hard!!!

e Learning the simplest (smallest) decision tree is an NP-
complete problem [Hyafil & Rivest '76]

* Resort to a greedy heuristic:
o Start from empty decision tree
> Split on next best attribute (feature)
> Recurse

e How to choose the best attribute and the value for a
split?



Entropy

* Entropy characterizes our uncertainty about our source of
information

* More uncertainty, more entropy!

> Information Theory interpretation: H(Y) is the expected number of bits
needed to encode a randomly drawn value of Y (under most
efficient code)



Information gain

* Advantage of attribute — decrease in uncertainty

> Entropy of Y before you split
k

H(Y)=-) P =y)loga P(Y =)
i=1

> Entropy after split

Weight by probability of following each branch, i.e., normalized

number of records
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 Information gain is difference

IG(X) = H(Y) — H(Y | X)



Learning decision trees

 Start from empty decision tree

» Split on next best attribute (feature)
> Use, for example, information gain to select attribute
> Split on argmax IG(X;) = arg max H(Y)-HY | X;)

e Recurse
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Base Cases

e Base Case One: If all records in current data subset
have the same output then don’t recurse

* Base Case Two: If all records have exactly the same set
of input attributes then don’t recurse
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Base Case 2
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Basic Decision Tree Building
Summarized

e BuildTree(DataSet,Output)

e [f all output values are the same in DataSet, return a leaf
node that says “predict this unique output”

e If all input values are the same, return a leaf node that
says “‘predict the majority output”

* Else find attribute X with highest Info Gain
e Suppose X has ny distinct values (i.e. X has arity ny).
> Create and return a non-leaf node with ny children.

° The i’th child should be built by calling
Build Tree(DSi,Output)

Where DSi built consists of all those records in DataSet
for which X = ith distinct value of X.



Decision trees will overfit

» Standard decision trees are have no learning biased
° Training set error is always zero!
(If there is no label noise)
° Lots of variance
> Will definitely overfit!!!
> Must bias towards simpler trees
* Many strategies for picking simpler trees:
> Fixed depth
° Fixed number of leaves

> Or something smarter...
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A statistical test

mpg values: bad good
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*Suppose that mpg was completely uncorrelated
with maker.

*What is the chance we’d have seen data of at least
this apparent level of association anyway!?




Using to avoid overfitting

* Build the full decision tree as before
e But when you can grow it no more, start to prune:

> Beginning at the bottom of the tree, delete splits in
which have extreme low chance to appear//pchance >
MaxPchance

> Continue working your way up until there are no
more prunable nodes



What you need to know about
decision trees

e Decision trees are one of the most popular data mining tools
> Easy to understand
> Easy to implement
> Easy to use
o Computationally cheap (to solve heuristically)

* Information gain to select attributes (ID3, C4.5,...)

Presented for classification, can be used for regression and
density estimation too

Decision trees will overfit!!!

o Zero bias classifier ! Lots of variance
> Must use tricks to find “simple trees”, e.g.,
Fixed depth/Early stopping

Pruning



Decision trees in Matlab

* Use classregtree class
e Create a new tree:

t=classregtree(X,Y), X is a matrix of
predictor values, y is a vector of n
response values

¢ Prune the tree:

tt = prune(t, alpha, pChance) alpha
defines the level of the pruning

e Predict a value
y= eval(tt, X)



